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ON ACCURACY IN RELIABILITY ESTIMATION

Abstract

This study in parametric test theory deals with the statistics of

reliability estimation when scores on two parts of a test follow a bi-

normal distribution with equal (case 1) or unequal (case 2) expectations.

In each case biased maximum-likelihood estimators of reliability are ob-

tained and converted into unbiased estimators. Sampling distributions are

derived. Second moments are obtained and utilized in calculating mean

sqLare errors of estimation as a measure of accuracy. A rank order of

four estimators is established. There is a uniformly best estimator.

Tables of absolute and relative accuracies are provided for various

reliability parameters and sample sizes.



ON ACCURACY IN RELIABILITY ESTIMATION

1. Introduction and Preliminaries

The present paper constitutes a part of a larger study in parametric

test theory. It is devoted ,o the development of formulas relevant in

reliability estimation with emphasis on the accuracy of various estimates

when explicit distributional assumptions regarding test scores are made.

This approach also permits the derivation of statistical tests of hypotheses

about reliability parameters. It does not limit itself to giving con-

jectured large sample estimators and stating relationships between

parameters.

Probably the first paper with emphasis on small sample distributions

of estimated reliabilities was written by Kristof [1963]. Feldt [19b5]

also took up the subject. Other papers in the area of parametric test

theory were given by Kristof [1970, 1972].

Inferences about the reliability of a given test require repeated

measurement in one form or another on a sample of subjects. Two approaches

to data collection are common: (a) one obtains multiple measurements

using basically the same test whose reliability is the quantity of interest;

(b) one obtains multiple measurements using comparable parts of the test

whose reliability is the quantity of interest.

In the second case the reliability of the component parts is stepped

up to give the reliability of the total test. This procedure is not re-

quired in the first case. One might, therefore, assume that case (b)

should lead to a statistical theory more complicated than that based on

case (a). However, the opposite is true. Not much work with emphasis on
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statistics has been presented for case (a). There is an important paper

by Olkin and Pratt [1958] that bears on some of the existing problems.

Contributions dealing with case (b) are more numerous.

It is case (b) to which we address ourselves here also. Some of the

results will be specirl cases of formulas in Kristof [1963]; others will be

new. In particular, we wish to include a table of mean square errors of

reliability estimators so that the comparative merits of several estimators

can be assessed. It is obvious that the choice of a particular estimator

out of a number of possible ones could well be based upon a comparison of

accuracies.

In practice the most important instance of case (b) occurs when a

test has been divided into just two parts. Using the classical test theory

model and denoting total observed, true and error scores by X , T and

E , respectively, and corresponding scores on the parts by Xi , Ti and

E. , i = 1,2 , we write

(1) X = Xi + X2 = T 4 E Ti + T2 + El + E2

Let us perform the transformation

(2) Y = Y X
1 "1 2 '

As to second moments classical test theory tells us that

2 2 2 2 2
() a = 4y = , GT GE ay y

1 1
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It has been assumed that the two parts are indistinguishable as regards

true score variance and mean and variance of errors of measurement. It

has not been assumed that true scores on the parts have equal means. If

they do, we will speak of case 1; if they do not, we have case 2.

In each case the reliability of the total test is given by

(4) 2,, 2 2 2 2
p a

T
/ka

T
+ aE) = 1 - a /

Y
1

aY
2

If we supply a hat to a parameter to denote its maximum-likelihood esti-

mator we obtain

(5) , A2 /A2
6$ = - a la

Y Y
-2

At this point it i3 necessary to introduce specific distributional assump-

tions. It will be assumed that X,
,

X
2

follow a bivariate normal dis-
i

tribution.

2. Distribution of

A2 /

Case 1. Since has eectation zero, we get a.
Y2

E /N where
1

xr

1 i
li

y
li

signifies the observed difference score for subject i , N being

A2 - /

the sample size. Further, a = (y,. - y
2

)
2
/N where y2i is the ob-

i

served value of Y
2

for subject i and y
2

is the arithmetic mean over

isubjects. Then p is given by (5). Quantity a
A2

is biased,
A2

ased, ay is

2 1

not. Replacing N by - 1 in ay yields the usual unbiased vari-
2

ance estimator. Combination of CO and 1,1 gives

(6) F
N,N-1

(N - 1)(1 - 0)/H(1 - p)



This magnitude is distributed as F with df, = N , df2 = N - 1 . It

would be a simple matter to obtain the distribution of 6 explicitly from

(6). liDwever, (6) is sufficient, for our purposes since it allows us to

test hypotheses about p and to establish confidence intervals for p .

A2 A2
Case 2. Now we have a = E (y . - y

1
)
2
/N , ay as before. Both

Y
1 i

11
2

a
A2 A2
v
'1

and a
Y2

are biased. This is immaterial, however, because the same

numerator appears in both formulas. We find that the quantity

(7) F
N-1 N-1

= (1 6)/(1 - p)

follows an F distribution with df
1
= df

2
= N 1 , 6 defined in (5).

It is possible to replace (7) by an equivalent but possibly more convenient

formula if we use the fact that

(8) tn = 1-/-1 ( FF 1/470 )/2

follows a t distribution with df = n when F
n,n

follows an F dis-

tribution with dfl = df2 = n . This relationship was discovered inde-

pendently by Aroian [1953], Cacoullos [1965] and Kristof [1972]. Thus

(9) t
N-1

-6) ,51177 /2 - p)(1 -13)

Equation (9) has no equally simple counterpart in case 1.

3. Bias of 6

Case 1. Taking expectations on both sides of (6) we g,..A [Kendall &

Stuart, 1958, p. 378]

es,
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(15) F
N-1,N-1

= (N - 1)(1 - P)/(N - 3)(1 P)

Again p is minimum variance unbiased.

5. Variance of 0

Case 1. Knowledge of the variance of 6 , cr^2 , will enable us to

calculate the mean square error of estimation in 6 . Taking variances on

both sides of (6) we get [Kendall & Stuart, 1958, p. 378]

(16) a,
2

= 2N(2N - 3)(1 - p) - 3)2(N 5)

Case 2. From (7) we obtain

, ,,,
(17) a,

2
= 4kN - 1)(N 2)(1 p)

2/kN
3)

2
kN 2)

by an analogous operation.

6. Mean Square Errors of Estimation in 0 and p

The mean square error of estimation, MSE, is a likely choice if a

measure of accuracy of an estimator is sought. MSEs of 0 are found

when we use

2
(18) MSE = p)

2
= CL. + (erS - p)

2

with p replaced by 6 if the latter0quantity is of interest. In this

2
case MBE = a-

P

Magnitudes a,
2

in cases 1 and 2 are given in (16) and (17).

(e6 - p)
2

is obtained from (10) and (11). Quantities a
2

may be
,

determined from (12) and (14).
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After calculating the four mean square errors (f estimation we wish

to summarize the results. In each case the MSE is the product of (1 p)
2

and a factor which depends only on N . These factors are listed in the

following fourfold table:

Case 1 Case 2

MSE of p (4N + 15)/(N 3)(N 5)

MSE of p 2(2N 3)/N(N 5)

11(N + l) /(N 3)(N 5)

4(N - 2)/(N - 1)(N - 5)

For conciseness let us use the symbol MSE.. to indicate the mean

square error of estimation in case i i = 1,2 , for estimator of type

j where j = 1 refers to 1:3 and j . 2 to p . We see that

(19) MSE,-
le < MSE22 < MSE21 <. MSE11

for all p < 1 and N > 5 Hence, if accuracy of estir 1 is the

-
criterion, p in case 1 is best and p in case 1 is worst. In addition,

p has the advantage of being unbiased. If the division of the total test

into two parts is such that only case 2 applies, then again p is pre-

ferred to p . At any rate, p in case 1 is the poorest possible choice

because MSE
11

is largest.

In the following table we list the ratios MSEij/MSE12 , ij / 12 ,

for selected sample sizes rounded to four decimal places:
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N = 6 10 20 50 100

MSE
22

/MSE
12

MSE
21

/MSE
12

MSE
11
/MSE

12

1.0667

3.1111

4.3333

1.0458

1.8486

2.3109

1.0242

1.3355

1.5103

1.0099

1.1187

1.1790

1.0050

1.0571

1.0859

For small sample sizes $ is generally quite inferior. If sample size

exceeds 100, the differences tend to be negligible, however. This table

can be easily extended if we use the relations

MSE
22

/MSE
12

= 1 + (N - 3)/(2N
2

5N + 3)

(20) MSE
21

/MBE
12

= 1 + (11N - 9)/(2N
2

- 9N + 9)

MSE
11
/MSE

12
1 + (33N - 18)/(11N2 - 18N + 18) .

For the best estimator, p in case 1, we give the actual values of

MSE
12

for various p and N rounded to four decimal places:

N = 6 10 20 50 100

p = .6o .h800 .1088 .0395 .0138 .0066

.7o .270o .0612 .0222 .0078 .0037

.80 .1200 .0272 .0099 .0034 .0017

.90 .0300 .0069 .0025 .0009 .0004

.95 .0075 .0017 .0006 .0002 .0001

This table reflects the rapid gain of accuracy of estimation as N and/or

p increase. We see in particular that the accuracy of estimation will be

uniformly high if N > 50 and p > .60 . It will be interesting to
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observe the trade-off occurring between p and N . For instance, the

accuracies in estimating p . 0.60 when N = 100 and p = 0.90 when

N = 1C are about equal.
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